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The problem of the biaxial non-equicomponent compression of a plane with two rectilinear cuts is considered as a model of the 
growth of a crack from the boundary of a narrow cavity. The problem reduces to a singular integral equation for the displacement 
jump density at one of the cuts (the crack). An analytic solution of the equation is constructed by reducing the problem to the 
conjugate problem which ~ when the Mellin transform is used and by employing a small parameter which describes the relative 
length and position of the cuts. Expressions for the stress intensity factors at the vertex of the crack are obtained for the eases 
of shear and tear-shear :rupture. The Griflith-Irwin approach is used to find the angles of orientation of the crack for which its 
growth is unstable. 

1. S T A T E M E N T  OF T H E  P R O B L E M  

Suppose we have an unbounded linearly elastic body with a narrow rectilinear cavity (slit) under 
conditions of  plane strain (or in a plane stressed state) under biaxial non-equicomponent compression 
at infinity, such that the surfaces of the cavity are not in contact with one another. It is assumed that 
along certain direct~ions the material has reduced resistance to shear and stretching. Because the stresses 
are concentrated near the slit, a crack can grow from its boundary along one of the weakened directions. 
The growth of the crack may then be unstable, its length growing dynamically without any variation in 
the external loads. 

We will consider an elastic plane containing two rectilinear cuts L l  {Z = a + Ire ia, I a I < L,  0 < t <- 1, 
0 < tx ~< ~}, L2{ [ Re z I < L, Im z = 0}, where z = x + / y  is a point in the complex plane, l is the length 
of the cut, L1 and L is the half-length of the cut L 2. The plane at infinity is acted upon by compressive 
stresses t~l = ~ ,  02 = <~ (t~ < 0, k I> 0) acting at an angle 13 (0 ~< 13 < n/2) to the x and y coordinate 
axes respectively (Fig. 1). Across the cuts the normal and shear stresses are continuous (and vanish at 
the cut L2), whereas the displacements have jumps, i 

A system of  four real singular integral equations for the unknown displacement jump densities at 
the cuts can be written out directly using integral representations for the complex potentials in terms 
of the displacement jumps (as is done, for example, for broken cracks [1]). This uses the Kolosov formula 
[2] with specified boundary conditions (for the stresses) on the L1 cut. To reduce the system we use a 
superposition of two auxiliary problems. ProblemA is for a plane with a cut L2 along which there is an 
arbitrary displacement jump and specified stresses at infinity. Problem B is for a plane with null conditions 
at infinity with a cut L2 on which the normal and shear stresses are specified by putting minus signs in 
front of the corresponding stresses in problem A. 

The complex potentials corresponding to problem A have the form [1] 

1 + ~ +  1 ~g(t)dt  
~A(Z) = a 4 2-n~ 

2 l ~g(t) dt ig(t)dt  (1.1) 
tIJA (Z) = G ~' 1 e-2il~ + "2"~ t - Z  ( t - z )  2 

g(t) = 2Ix d [ ~ ( t  )_iu(t)]eia 
l + r  at 
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Here g(t) is a function proportional to the displacement jump density at the cut L1, ~t is the shear 
modulus, ~: = 3 - 4v holds for plane deformation and z = (3 - v)/(1 + v) for the plane stressed state, 
v is Poisson's ratio, v(t), u(t)  are the normal and tangential components of the displacement vector, 
and the square brackets denote the jump of a quantity across the contour. 

Taking into account the single-valuedness of the displacements after a circuit of the combined contour 
L1 + L2 and using the known solution for an arbitrarily loaded cut [2], the appropriate integrals can 
be evaluated and the complex potentials in problem B take the form 

tan (z) = 1 ~ (E, (z, t )g( t )dt  - E 2 (z, ?)g(i)dt)  - ~-- R(z)  
2 

= l ( ( E ' ( z ' t ) + E 2 ( z ' t ) ) g ( t ) d t - ( E l ( z ' t ) - E 2 ( z ' t ) ) g ( t ) ' ~ ) -  (1.2) '%(z) --~ff~ ~ 

- z ~ ( z ) +  Po -Po R(z) 
2 

E I (z , t )  = E ( z , t )+  E(z , i ) ,  E2(z , t )  = ( t -  t )  ~E(z , t )  
Ot 

z 
= , R ( z )  = l -  

e ( z , t )  ~ z 2 _ L 2 ( z _ t  ) ~z2 _ L2 

PO = 2 (I  + ~" + (~' - 1) e2t13 ) 

The summed potentials from problemsA and B satisfy the boundary conditions at both infinity and 
on the cut L2 for an arbitrary displacement jump on the cut L1, the distribution of which must be found 
from an appropriate equation which follows from the boundary conditions on L2. 

We will consider the case when the length of the crack is small compared with the length of the slit. 
Puttingz = a + l~ i% t = a + l~e/a (0 ~< 5,11 ~< 1) and expanding (1.2) in a series in the small parameter 

e. = 21LI(L 2 - a 2) (1.3) 

we find a relation between the normal stresses N and the shear stresses T and the displacement jump 
along L1 

-~ MIk.rl J k,'~ J ) 
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5 M, ‘- 0 rl 
=--&+ReM[~)-2sin2a(M(~)-1E,M2(~)+262~’(~)) 

I (1.4) 

M(c) = (5 _ e-2ia)-I, c = -ie’y;2 a sinaReg(q)+ cosaImg(q))qdq 

p,(tj,) =--’ ZRcP.R(S)+~(W-W)R(S)-i~~~sina~R(~) 

The asymptotic behaviour of the stresses near L2 follows directly from (1.4). Rutting g(q) = 0 we find 
that 

0, (5) I I ~pcl(5) 
=-((I,-h)sin(2f3-y)1+@) ‘Ina 

o2 sin a 

sin y II . -cosa II 

cosy=f, D= b(a,P)f+W,P) 
I 
iI,* 

sin a 

cosa I 

l-h 
b(a,l3)=ysina+-. 2 sin(a+2P) 

(l-5) 

where I is the unit matrix. 
Elementary analysis of relations (1.5) shows that when (1 - h) > 0 (( 1 - h) < 0) the Lz: -L < a < L 

~0s 28 part of the upper boundary of L2 is in a state of extension (compression) and the remaining part 
L cm 28 < a < L is in a state of compression (extension). The situation is skew-symmetric on the lower 
edge of the cut. 

A crack may develop in the extended zones from the boundary of the cut along a line of weakness, 
accompanied by separation and shear (a tear-shear rupture), and in the compressed zones a shear crack 
(a shear rupture) can develop. The appropriate boundary conditions on the cut L1 take the form 

for a tear-shear rupture, and 

for a shear rupture. 

IT(( -tgpN(Q, IV(() c 0, Re g = 0, 0 I 5 I 1 (1.7) 

The last condition can only be satisfied for angles a satisfying the inequalities 

O<ac7c12-p, 7d2+pca<n (14 

For hydrostatic compression at infinity there are no extended zones, but the formation of shear cracks 
according to condition (1.7) is possible at points far from the boundary of the cut with the same 
restrictions on the angle a. 

In the case when p = O(the cut is directed along the direction of oi) the whole boundary is either 
under extension (when 1 a2 I> 1 q I) or compression (when I 02 I < I q I), and conditions (1.6) or (1.7) 
for crack growth are preserved. 

A maximum of tihe stretching stresses is reached when a = x/2, and the maximum of I T I + tg pN 
when a = x/4 - p/:2, a = 3x/4 + p/2, so that when there are no lines of weakening cracks are most 
likely to develop along these directions. 

2. THE PROBLEM OF MATCHING 

The application of a Mellin transform to integral relation (1.4) leads to a functional relation between 
the transforms of the stresses and displacement jumps along the line of the cut L1 which occurs in the 
strip 6 c Re s s 0 ~(6 < 0) of the complex transformation parameter s 
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- tg  ~ G ( s ) V -  (s) = V + (s) + F-  (s) 

G ( s ) =  L t ( s )+~ '2(s )  I ~'l(s)-~'2(s) B 
2 2 

~1.2 (s) = (h + s sin ot sin s(rt - 2tx)X/-f) sin-2 (sx / 2) 

h = sin sasin s(Tt - t x ) - s  2 sin 2 txcoss (n -  2tx), f = -de t  B = 1 - s  2 sin 2 ot 

B _  1 I costx ( l - s ) s in tx  I 
- ~  ( l+s)s inot  -cosot  W 

!11 I m :"x;I 
t ~ s i n t x ( l - X s i  - e D sintx[_ 

e2 si"2 I sin [ Ilsi. a, cos allY- (t). 
I-cos l 

(2.1) 

(2.2) 

Here G is a (2 x 2) matrix, 2q, 2(s) are its eigenvalues, and V ~ and F -  are (2 x 1) matrices. 
In the case of a tear-shear rupture the side of the cut L1 is free from stresses (boundary condition 

(1.6)) and relation (2.1) is a problem of matching for two pairs of  functions V~(s) analytic in the domains 
Re s ~< 0, Re s I> 0. In the case of shear rupture, when boundary conditions (1.7) are satisfied on L1, 
multiplication of (2.1) on the left by the row (tg p, - 1), using Re g - 0, gives a one-dimeusional matching 
problem which preserves the form of (2.1), but its coefficient G(s),  the unknown functions V~(s), and 
the free term F-(s)  take the form 

G(s)  = (h + s sin tx sin sot  - 2tx)(cos tx - (1 - s)tgp sin a))  sin -2 (s'tt / 2) 
I 

V- (s) = -7 Im g(x)x"dx,  V + (s) = J (x m (x)  - tgpt~ a (x))x'~dx (2.3) 
1 0 

F- (s) = - °  sin °t c°s(c t -  P ) (  ll--~-sk sin(2 ~ - .  T)+ 
s i n  T c o s  p 

sin 215 cos(2ot - p)'~ 
+ ((1 + ~.)sin tx + (1 _ X)(sin(ot + 2 a ) + e  ~ v ~ ~  ) - 

i~ 2 sin 2 ot cos(or - p) cosotV- (I) 
2rt(l + s)cosp 

When e = 0, the boundary-value problems (2.1), (2.2) and (2.1), (2.3) are identical with those consider- 
+ 

ed in [3] and [4], respectively. After factorizing the coefficients ctg (srj2) = 2g+(s)K-(s)/s, G(s)  = G (s) 
((G-(s))- '  the solution can in both cases be represented in the form (choosing the matching fine to be 
the imaginary axis) 

V-(s) = 2 K - ( S ) G - ( s ) ( n - O - ( s ) ) ,  
$ 

V + (s) = K ~ s )  (G+ (s))-I (H - d? + (s)) 

K+-(s)= F(I-T-s / 2) / F(I / 2 T-s / 2 ) (2.4) 

1 +i~ ,~tt~ 
+ , _ W k  1 (? (s ) - - -2-~ !-i'-s-~dt, ~ ( t ) = K + ( t ) ( G + ( t ) ) - I F - ( t )  
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where k I and k2 are the stress intensity factors at the vertex of the cut Lt. 
Since V-(0) is the opening of the crack at the point where it reaches the boundary of the cavity, then 

the (physical) reqtfirement that this quantity should be bounded (C = ~-(0)) leads to an expression for 
the stress intensity factors 

k, 2 (2.5) 

in terms of the boundary value of the function ~-(0), which can be calculated from the theorem of residues 

~0-(0) = -resq~(-1)- ~ resO(-2), resO(-k) = lim'(t + k)O(t), k = 1,2 
t - e - k  

The unknown constant V-(l) is determined from the solution, for which it is necessary to put s = 1, 
which leads to the linear equation 

V-(l) = 2sK-(1)G-(I)(O-(I) - 0- (0)) (2.6) 

In problem (2.1), (2.2) a factorization of the matrix G(s) is sought in the form [3] 

(2.7) 

[ 1 +i~ dr], [ 1 +i~ dt] 
4 f ( O  (t - s) 

where A(s) = kl(s)~2(s), ~(s) = ¥21n(2q(s)/X2(s)) are, respectively, the determinant and index of the matrix 
G(s). 

Take into account the evenness of the real functions A(it), 7(it) along the matching line, we can write 
the functions A±(s)7~(s) on the real axis in the form 

1 (2.8) 

[ k "7 y(it) ] 
"/+ (-k) = -Y- (-k) = exPL~- ~ ( t 2  + k2) d' 

The coefficient in the matching problem (2.1), (2.3) has no zeros or poles on the imaginary axis and 
tends to unity at infinity, which enables us to factorize it in the form [4] 

I" 1 +/** In G(t) dt] 
G±(s) = e x p / m  I 

L 2•i _i. t - s  j 

Separating the real and imaginary parts of the integrand along the matching line, using the evenness 
of the modulus (arg G) and the oddness of the argument (G+(s)), we find that on the negative real axis 
the value of I G I is 

G +  . . . .  [ 1 7klnlG(it)l+targG(it) ] exp[  J0 dt 
J 

(2.9) 
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3.  U N S T A B L E  C R A C K  G R O W T H  

During the growth of  the crack the sum of the squares of the stress intensity factors is proportional 
to the density of  the energy released by the fracture of the material (see for example [5]), and so we 
can take 

Ik I +ik21= k c (3.1) 

to be a condition governing the crack growth, where kc is a constant of the material which describes its 
crack resistance. From the solution obtained above we have the asymptotic representation for the stress 
intensity factors 

kj =ko i +ekjj + E2k2 j+  . . . .  j = 1,2 (3.2) 

where the functions kmj do not depend on ~. 
For small crack lengths the onset of  crack growth is governed by the magnitudes of the first terms 

of the asymptotic form in both the stable and unstable (dynamic) cases. Below we shall assume (starting 
with the static solution) that instability occurs when the left-hand side of (3.1) increases as the crack 
length increases, and that in the opposite case the crack grows stably. Ignoring terms in (3.2) of  order 
higher than unity, we can represent the condition for unstable growth in the form 

IIk0,,k0211 [k,, > 0 (3.3) 
i k j 2  " 

Using formulae (2.2), (2.4)-(2.8) the stress intensity factors in the ease of  a tear-shear fracture take 
the form 

Ukll °sin° sino  
k2 = stny ( (1-k)sin(213-Y)GI ~ 2 JII-cos   (3.4) 

when (1 - k) s in(2~-  y) < 0. Here Gn = Q-I(G+(-n))-I are matrices corresponding to the dimensionless 
stress intensity factors (kj/Vl) in the ease when a constant load (n = 1) and a linear load (n = 2) are 
specified on the crack. The elements of the matrices Gn are given in Table 1 as functions of the angle 
0~. I 

If ct > •/2, the elements of (7, are obtained by replacing ct by g - tx and multiplying by (-1) k+/. 
Condition (3.3) is not satisfied when 13 = 0 and I~ = n/2 for all the values of  Z. and tx in the range of 

variation under consideration (k I> 0, 0 < ot < n). Calculations show that for  angles cx dose  to g/2, 
relation (3.3) is also not satisfied, i.e. only stable crack growth is possible perpendicular to the boundary 
of the cavity. 

Figure 2 shows regions of values of the parameters o~, 13 and p for which the growth of  tear-shear 
cracks is unstable. When E > 1 (~. < 1) inequality (3.3) is satisfied for all points with coordinates ix, 
lying above (below) the curve with the given value of ~.. Curves corresponding to values of ~, and ~-1 
are skew-symmetric about the axes tx = rd2, I~ = r,/4. 

For shear fracture we have, from (2.3)-(2.6) and (2.9) that 

Table 1 

ct rt/12 rd6 r~/4 n/3 5n/12 n/2 
{Gi } i,i 5.237 2.339 1,593 1,292 1.160 1.122 
{ GI } I_~ 0,477 0.282 0.184 0, I 13 0.054 0 
{GI }2J 3,105 1.041 0.507 0.266 0.117 0 
{Gj }2,2 1.737 1,377 1,236 1,166 I,I 32 1,122 
I G2 } t j  4,369 2.278 1.724 1.496 1,395 1.365 
( G2 ) 1.2 0.440 0.252 0~ 161 0.098 0.047 0 
{ G2 ) 2. i 2,064 0.694 0.340 0, i 79 0,079 0 
{ G2 )2,2 1,923 1.591 1.465 1.404 1.375 1.365 
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k 2 = - o s i n  a c ° s ( a  + P) ((1 - k)sin(213 - y)G+(- l )  + 
sin ¥ cos p 

sin 213cos(p + 2 a ) ~ /  +-~G+(-2)( (l+ L)sina+(l-L)(sin(a+ (2~3)+ co-~'~ J) (3.5) 

when 0 < a ~< rd2 - p, (1 - X) sin(213 - y) > 0. 
When rd2 + p ~< a < ~ we must change the sign in expression (3.5) and put p = -p.  
The dependence of the functions G +-1 (-1)  and G +-2 (-2) on a and p is given in Table 2. 
The growth of  a shear crack is unstable, by condition (3.3), if both terms in (3.5) have the same sign. 

Figure 3 shows the regions of  values of  the parameters O and a for two values of k and 13 for which 
crack growth is impossible (1) (because of  condition (1.8)), stable (2) and unstable (3). Calculations 
show that for other values of  k, 13([~ ~ 0) the situation remains qualitatively similar. 

When 13 -- 0, ~ > 1 the growth of  shear crack is unstable for all angles a satisfying condition (1.8). 
The growth of  shear cracks from the end of a slit which models a mine working has been considered 
[6], and in the ease when 13 = 0 a range of  angles between the crack and the slit has been found for 
which the crack grows unstably. 

It is interesting to note that directions at the end of the working along which shear cracks could not 
develop unstably could, as the working was extended, become directions along which the cracks should 
grow unstably, which rather extends the "dangerous" range of angles between geological fractures and 
workings that was given in [6]. 

Table 2 

(6'+(-I))-) (G+( -I))-2 

ct p = 0 ~12 g/6 rL/3 0 rdl2 rt/6 7r, r3 

lt/I 2 1.221 I. 196 I. 166 1.048 I. 117 I. 100 1.079 
~/6 I. 132 I. 134 I. 136 I. 135 1.068 1.072 1.076 
rd4 I. 121 I. 139 I. 161 1.068 1.082 1.099 
if/3 1.121 1.142 1.170 1.072 1.087 1.106 
51r/12 1.121 1.135 1.073 1.082 

1.121 1.073 

0.992 
1.085 
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